Studying reactive processes with classical dynamics: rebinding dynamics in MbNO.

نویسندگان

  • David R Nutt
  • Markus Meuwly
چکیده

A new surface-crossing algorithm suitable for describing bond-breaking and bond-forming processes in molecular dynamics simulations is presented. The method is formulated for two intersecting potential energy manifolds which dissociate to different adiabatic states. During simulations, crossings are detected by monitoring an energy criterion. If fulfilled, the two manifolds are mixed over a finite number of time steps, after which the system is propagated on the second adiabat and the crossing is carried out with probability one. The algorithm is extensively tested (almost 0.5 mus of total simulation time) for the rebinding of NO to myoglobin. The unbound surface (Fe...NO) is represented using a standard force field, whereas the bound surface (Fe-NO) is described by an ab initio potential energy surface. The rebinding is found to be nonexponential in time, in agreement with experimental studies, and can be described using two time constants. Depending on the asymptotic energy separation between the manifolds, the short rebinding timescale is between 1 and 9 ps, whereas the longer timescale is about an order of magnitude larger. NO molecules which do not rebind within 1 ns are typically found in the Xenon-4 pocket, indicating the high affinity of NO to this region in the protein.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

"Strange kinetics" in the temperature dependence of methionine ligand rebinding dynamics in cytochrome c.

The temperature dependence of methionine ligand dissociation and rebinding dynamics in cytochrome c in aqueous solution has been studied using classical molecular dynamics simulation. Results are compared with previous study of rebinding dynamics at 300 K in water in order to understand how the change of protein environment and the underlying protein energy landscape influence the dynamics. Reb...

متن کامل

Studying Short-Time Dynamics of Vegetation and Soil Organic Carbon in a Semi-arid Rangeland (Case Study: Zharf, Khorasan Province, Iran)

Abstract. Rangeland vegetation dynamics encompass all processes of changes in vegetation composition and structure over time. Investigating the rangeland ecosystem dynamics makes it possible to determine the effects of climatic and management conditions on qualitative and quantitative changes of the vegetation in a specific period of time. Accordingly, data collection and measurements for evalu...

متن کامل

CO Rebinding Kinetics and Molecular Dynamics Simulations Highlight Dynamic Regulation of Internal Cavities in Human Cytoglobin

Cytoglobin (Cygb) was recently discovered in the human genome and localized in different tissues. It was suggested to play tissue-specific protective roles, spanning from scavenging of reactive oxygen species in neurons to supplying oxygen to enzymes in fibroblasts. To shed light on the functioning of such versatile machinery, we have studied the processes supporting transport of gaseous heme l...

متن کامل

Molecular Dynamics Simulation of Al/NiO Thermite Reaction Using Reactive Force Field (ReaxFF)

In this work, the thermal reaction of aluminum (Al) and nickel oxide (NiO) was investigated by molecular dynamics simulations. Some effective features of reaction such as reaction temperature, the reaction mechanism, and diffusion rate of oxygen into aluminum structure were studied. ReaxFF force field was performed to study the Al/NiO thermite reaction behavior at five different temperatures (5...

متن کامل

Dynamics of methionine ligand rebinding in cytochrome c.

Geminate recombination of the methionine ligand to the heme iron in ferrous cytochrome c protein following photodissociation displays rich kinetics. It is of particular interest to develop an understanding of fast and slow rebinding time scales, observed in experimental studies, in terms of features of the underlying complex energy landscape. The classical empirical force field in the heme pock...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biophysical journal

دوره 90 4  شماره 

صفحات  -

تاریخ انتشار 2006